Search results for "Large-Conductance Calcium-Activated Potassium Channel alpha Subunits"

showing 3 items of 3 documents

11,12-EET Stimulates the Association of BK Channel α and β1 Subunits in Mitochondria to Induce Pulmonary Vasoconstriction

2012

In the systemic circulation, 11,12-epoxyeicosatrienoic acid (11,12-EET) elicits nitric oxide (NO)- and prostacyclin-independent vascular relaxation, partially through the activation of large conductance Ca(2+)-activated potassium (BK) channels. However, in the lung 11,12-EET contributes to hypoxia-induced pulmonary vasoconstriction. Since pulmonary artery smooth muscle cells also express BK channels, we assessed the consequences of BKβ(1) subunit deletion on pulmonary responsiveness to 11,12-EET as well as to acute hypoxia. In buffer-perfused mouse lungs, hypoxia increased pulmonary artery pressure and this was significantly enhanced in the presence of NO synthase (NOS) and cyclooxygenase (…

BK channelAnatomy and PhysiologyLarge-Conductance Calcium-Activated Potassium Channel beta SubunitsRespiratory Systemlcsh:MedicineCardiovascularCardiovascular SystemBiochemistryIon ChannelsMembrane PotentialsMice81114-Eicosatrienoic AcidHypoxic pulmonary vasoconstrictionHypoxiaLarge-Conductance Calcium-Activated Potassium Channel alpha Subunitslcsh:ScienceLungEnergy-Producing OrganellesEpoxide HydrolasesMembrane Potential MitochondrialMembrane potentialMultidisciplinarybiologyChemistryDepolarizationHyperpolarization (biology)IberiotoxinMitochondriaBiochemistryCirculatory Physiologycardiovascular systemMedicinelipids (amino acids peptides and proteins)medicine.symptomResearch ArticleCell Physiologymedicine.medical_specialtyPulmonary ArteryBioenergeticsCardiovascular PharmacologyInternal medicinemedicineAnimalsHumansArterial Pressureddc:610Protein InteractionsBiologylcsh:RProteinsCalcium-activated potassium channelMice Inbred C57BLHEK293 CellsEndocrinologyVasoconstrictionbiology.proteinlcsh:QGene DeletionVasoconstrictionPLoS ONE
researchProduct

De novo loss-of-function KCNMA1 variants are associated with a new multiple malformation syndrome and a broad spectrum of developmental and neurologi…

2019

Abstract KCNMA1 encodes the large-conductance Ca2+- and voltage-activated K+ (BK) potassium channel α-subunit, and pathogenic gain-of-function variants in this gene have been associated with a dominant form of generalized epilepsy and paroxysmal dyskinesia. Here, we genetically and functionally characterize eight novel loss-of-function (LoF) variants of KCNMA1. Genome or exome sequencing and the participation in the international Matchmaker Exchange effort allowed for the identification of novel KCNMA1 variants. Patch clamping was used to assess functionality of mutant BK channels. The KCNMA1 variants p.(Ser351Tyr), p.(Gly356Arg), p.(Gly375Arg), p.(Asn449fs) and p.(Ile663Val) abolished the …

MaleAtaxiaGenotypeDevelopmental DisabilitiesMutation MissenseBiology03 medical and health sciences0302 clinical medicineNeurodevelopmental disorderProtein DomainsLoss of Function MutationGeneticsmedicineHumansMissense mutationAbnormalities MultipleGenetic Predisposition to DiseaseProtein Interaction Domains and MotifsAlleleLarge-Conductance Calcium-Activated Potassium Channel alpha SubunitsMolecular BiologyAllelesGenetic Association StudiesGenetics (clinical)Loss functionExome sequencing030304 developmental biologyGenetics0303 health sciencesInfant NewbornGeneral MedicineParoxysmal dyskinesiamedicine.diseaseElectrophysiological PhenomenaPedigreePhenotypeAmino Acid SubstitutionSpeech delayFemaleGeneral Articlemedicine.symptom030217 neurology & neurosurgeryHuman Molecular Genetics
researchProduct

Association of a functional deficit of the BKCa channel, a synaptic regulator of neuronal excitability, with autism and mental retardation

2006

International audience; Objective: Autism is a complex, largely genetic psychiatric disorder. In the majority of cases, the cause of autism is not known, but there is strong evidence for a genetic etiology. To identify candidate genes, the physical mapping of balanced chromosomal aberrations is a powerful strategy, since several genes have been characterized in numerous disorders. In this study, the authors analyzed a balanced reciprocal translocation arising de novo in a subject with autism and mental retardation. Method: The authors performed the physical mapping of the balanced 9q23/ 10q22 translocation by fluorescent in situ hybridization experiments using bacterial artificial chromosom…

MaleCandidate geneChromosomes Artificial BacterialIndolesDNA Mutational AnalysisRegulatorChromosomal translocationautism mental retardation KCNMA1 genelarge conductance Ca(2+)-activated K(+) (BK(Ca)) channel synaptic transmission chromosomal translocationSynaptic TransmissionTranslocation GeneticPair 10CA2+-ACTIVATED K+ CHANNELSCloning MolecularChildLarge-Conductance Calcium-Activated Potassium Channel alpha SubunitsMUTATIONIn Situ HybridizationIn Situ Hybridization FluorescenceReverse Transcriptase Polymerase Chain ReactionBacterialChromosome MappingETIOLOGYPsychiatry and Mental healthArtificialKCNMA1 Gene[SDV.NEU]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]HaploinsufficiencyPsychologyChromosomes Human Pair 9POTASSIUM CHANNELSHumanPair 9Autistic Disorder; Child; Chromosome Aberrations; Chromosome Mapping; Chromosomes; Artificial; Bacterial; Chromosomes; Human; Pair 10; Chromosomes; Human; Pair 9; Cloning; Molecular; DNA Mutational Analysis; Humans; In Situ Hybridization; Fluorescence; Indoles; Intellectual Disability; Large-Conductance Calcium-Activated Potassium Channel alpha Subunits; Male; Reverse Transcriptase Polymerase Chain Reaction; Synaptic Transmission; Translocation; GeneticTranslocationNeurotransmissionChromosomesFluorescenceGeneticIntellectual DisabilitymedicineHumansAutistic DisorderRELEASEChromosome AberrationsCOMPLEXChromosomes Human Pair 10MolecularAutistic Disorder; Child; Chromosome Aberrations; Chromosome Mapping; Chromosomes Artificial Bacterial; Chromosomes Human Pair 10; Chromosomes Human Pair 9; Cloning Molecular; DNA Mutational Analysis; Humans; In Situ Hybridization Fluorescence; Indoles; Intellectual Disability; Large-Conductance Calcium-Activated Potassium Channel alpha Subunits; Male; Reverse Transcriptase Polymerase Chain Reaction; Synaptic Transmission; Translocation GeneticPERVASIVE DEVELOPMENTAL DISORDERSmedicine.diseaseDevelopmental disorderINDIVIDUALSLARGE-CONDUCTANCEAutismSCREENNeuroscience[SDV.MHEP]Life Sciences [q-bio]/Human health and pathologyCloning
researchProduct